Des chercheurs du laboratoire Geoazur montrent pour la première fois qu’il est possible de détecter la propagation d'ondes sismiques au fond des océans avec des câbles sous-marins de télécommunication. D’après leurs observations, ces infrastructures existantes pourraient être exploitées pour détecter les séismes, mais aussi la houle ou encore le bruit sous-marin. Ces résultats sont publiés dans la revue Nature Communications le 18 décembre 2019 en collaboration avec la société Fébus Optics et le Centre de physique des particules de Marseille (CNRS/Aix-Marseille Université).
1,2 million de kilomètres de câbles de télécommunication tapissent le fond des océans (trois fois la distance de la Terre à la Lune). Composés de fibres optiques, ils rendent possible une grande partie de nos échanges par téléphone, SMS ou courriel. Et ils pourraient bientôt acquérir une nouvelle fonction : capter les ondes acoustiques et sismiques.
Les scientifiques ont ici utilisé un câble de 41 km, installé au large de la côte toulonnaise pour récupérer les données des capteurs de l’observatoire sous-marin MEUST-NUMerEnv2, à 2500 m de profondeur. La méthode mise au point tire parti de petites impuretés contenues dans les fibres optiques, qui renvoient vers l’émetteur une partie de la lumière qu’elles transportent. En étirant ou en contractant la fibre, le passage d’une onde sismique ou acoustique modifie de manière infime3 l’écart entre ces impuretés, et donc le signal renvoyé. Encore fallait-il vérifier que ces différences étaient perceptibles car, dans les câbles sous-marins, les fibres optiques sont entourées de plusieurs couches isolantes.
En injectant dans une fibre optique des pulses de lumière et en analysant le signal renvoyé, l’équipe a converti les 41 km de fibre optique en plus de 6000 capteurs sismiques. Un séisme de magnitude 1,9 survenu au cours de l'expérience, pourtant localisé à plus de 100 km du câble (figure 1), a été détecté par chacun des points de mesure avec une sensibilité proche de celle d’une station sismologique installée sur la côte.
Mais ce n’est pas tout : ces mesures sont aussi sensibles aux ondes qui se propagent au sein de l’océan, comme celles produites par la houle. Les auteurs ont ainsi enregistré l’empreinte des vagues sur le fond marin à proximité de la côte, et aussi leur effet sur la plaine abyssale, où elles génèrent le « bruit de fond sismique ». Ces capteurs ont ainsi permis, pour la première fois, d’observer comment sont produites ces très faibles vibrations qui agitent de manière permanente l’intérieur de la Terre et permettent aux géophysiciens de sonder sa structure.
Les chercheurs et chercheuses supposent que, telle une ligne de microphones, un câble de télécommunication pourrait de la même manière capter le bruit sous-marin produit par les navires ou par les cétacés.
Face au défi (logistique et financier) que représente l’instrumentation des fonds marins, les câbles de télécommunication offriraient donc une solution pour mieux connaître cette terra incognita couvrant les deux tiers du globe, et répondre à une multitude d'enjeux scientifiques et sociétaux – séismes, érosion des côtes, interaction entre le vivant, l’océan et la « Terre solide », …
Un certain nombre de câbles actuellement en service vont être « mis à la retraite » par les opérateurs de télécommunication au cours des prochaines années. Grâce à ces travaux, ils connaîtront peut-être une deuxième vie.
Notes
1 Ces conclusions sont confirmées de manière indépendante par une autre équipe, dont l’article est publié dans la même édition (Teleseisms and microseisms on an ocean-bottom distributed acoustic sensing array, E Williams, MR Fernandez-Ruiz, R Magalhaes, R Vanthillo, Z Zhan, M Gonzàlez-Herràez, H.F. Martins).
2 L’observatoire sous-marin MEUST-NUMerEnv, porté par le CNRS, est composé d’un télescope à neutrinos et de capteurs dédiés aux sciences de la Terre et de l’environnement.
3 De l’ordre d’un nanomètre (un milliardième de mètre, environ le millième du diamètre d’un cheveu).
Bibliographie
Distributed sensing of earthquakes and ocean-solid Earth interactions on seafloor telecom cables, Anthony Sladen, Diane Rivet, Jean-Paul Ampuero, Louis De Barros, Yann Hello, Gaëtan Calbris, Patrick Lamare. Nature Communications, 18 décembre 2019. DOI : 10.1038/s41467-019-13793-z
Contacts
Chercheur CNRS - Anthony Sladen - T +33 4 83 61 86 86 - sladen@geoazur.unice.fr
Chercheuse Observatoire de la Côte d’Azur - Diane Rivet - T +33 4 83 61 86 83 - diane.rivet@geoazur.unice.fr
Presse CNRS - Véronique Etienne - T +33 1 44 96 51 37 - veronique.etienne@cnrs.fr